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Summary

1. Genome-scan methods are used for screening genomewide patterns of DNA polymorphism to detect signa-

tures of positive selection. There are twomain types of methods: (i) ‘outlier’ detectionmethods based on FST that

detect loci with high differentiation compared to the rest of the genome and (ii) environmental association meth-

ods that test the association between allele frequencies and environmental variables.

2. We present a new FST-based genome-scan method, BayeScEnv, which incorporates environmental

information in the form of ‘environmental differentiation’. It is based on the F model, but, as opposed to

existing approaches, it considers two locus-specific effects: one due to divergent selection and the other

due to various other processes different from local adaptation (e.g. range expansions, differences in muta-

tion rates across loci or background selection). The method was developped in C++ and is available at

http://github.com/devillemereuil/bayescenv.

3. A simulation study shows that our method has a much lower false positive rate than an existing FST-based

method, BayeScan, under a wide range of demographic scenarios. Although it has lower power, it leads to a bet-

ter compromise between power and false positive rate.

4. We apply ourmethod to a human data set and show that it can be used successfully to study local adaptation.

We discuss its scope and compare it to other existingmethods.

Key-words: Bayesian methods, environment, F model, false discovery rate, genome scan, local

adaptation

Introduction

One of themost important aims of population genomics (Luik-

art et al. 2003) is to uncover signatures of selection in genomes

of non-model species. Of special interest is the process of local

adaptation, whereby populations experiencing different envi-

ronmental conditions undergo adaptive, selective pressures

specific to their local habitat. As a result, populations evolve

traits that provide an advantage in their local environment.

Many experimental approaches focused on potentially adap-

tive traits have been developed to test for local adaptation

(reviewed in Blanquart et al. 2013), but only recently it has

become possible to make inferences about the genomic regions

involved in local adaptation processes. Indeed, the advent of

next-generation sequencing (NGS, Shendure & Ji 2008) has

fostered the development of so-called genome-scan methods

aimed at identifying regions of the genome subject to selection.

These methods are now widely used in studies of local adapta-

tion (Faria et al. 2014).

There are twomain types of genome-scanmethods. The first

type detects ‘outlier’ loci using locus-specific FST estimates,

which are compared to either an empirical distribution (Akey

et al. 2002) or a distribution expected under a neutral model of

evolution (Beaumont & Balding 2004; Foll & Gaggiotti 2008).

The rationale behind these methods is that local adaptation

leads to strong genetic differentiation between populations,

but only at the selected loci (or marker loci linked to them).

Thus, loci with very high FST compared to the rest of the gen-

ome are suspected to be under strong local adaptation and are

referred to as outliers. The outlier approach was further

extended to statistics akin to FST (Bonhomme et al. 2010;

G€unther & Coop 2013) and also to other unrelated statistics

(Duforet-Frebourg, Bazin & Blum 2014). One limitation of

these methods is that they are not designed to test hypotheses

about the environmental factors underlying the selective pres-

sure.

A second type of methods focuses on environmental vari-

ables and aims at associating patterns of allele frequency to

environmental gradients. The rationale is that selective pres-

sures should create associations between allele frequencies at

the selected loci and the causal environmental variables (Coop

et al. 2010). In the presence of population structure, perform-

ing a simple linear regression would be an error-prone

approach (De Mita et al. 2013; de Villemereuil et al. 2014).

Instead, existing methods account for population structure by

modelling the allele frequency covariation across populations

(Coop et al. 2010; Frichot et al. 2013; Guillot et al. 2014). One

disadvantage of most of these approaches is that the parame-
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ters that capture the effect of demographic history on genetic

differentiation do not have a clear biological interpretation,

which in turn makes the rejection of the null model hard to

interpret in terms of detection of local adaptation. In particu-

lar, note that although the elements of the covariance matrix

estimated by Coop et al. (2010) could in principle be inter-

preted as parametric estimates of the pairwise and population-

specific FST, this is only true when levels of genetic drift are low

(Nicholson et al. 2002).

It is important to note that, regardless of the type of gen-

ome-scan method under consideration, processes other than

local adaptation might be responsible for the observed spatial

patterns in allele frequency or FST. These include demographic

processes such as allele surfing (Edmonds, Lillie & Cavalli-

Sforza 2004) or hierarchical population structure (Excoffier,

Hofer & Foll 2009), large differences in mutation rate across

loci (Edelaar, Burraco & Gomez-Mestre 2011), hybrid incom-

patibility following secondary contact (Kruuk et al. 1999) and

background selection (Charlesworth 1998). It is therefore pos-

sible that some of the loci identified as outliers are in fact false

positives. Accounting for processes other than selection would

require introducing parameters that could appropriately cap-

ture the effect of these other processes.

Here, we present a method that incorporates features of the

two types of genome scans described above. The objective is to

allow inferences about the environmental factors underlying

selective pressures and simultaneously better discriminate

between true and false genetic signatures of local adaptation.

Note that our new method focuses only on local adaptation

driven by a focal environmental variable and therefore differs

from other FST-based methods that carry out ‘blind’ genome

scans. Thus, this new approach is aimed at testing hypothesis

about specific drivers of local adaptation such as altitude (Big-

ham et al. 2010; Foll et al. 2014), salinity (Larsson et al. 2007;

Daub et al. 2013), pathogens (Fumagalli et al. 2011; Daub

et al. 2013), etc.

Our method is based on the Bayesian approach first pro-

posed by Beaumont & Balding (2004) and later extended by

Foll & Gaggiotti (2008). The original formulation considers

population- and locus-specific FST’s, which are described by a

logistic model with three parameters: a locus-specific term, ai,
that captures the effect of mutation and some forms of selec-

tion; a population-specific term, bj, that captures demographic

effects (e.g. Ne and migration); and a locus-by-population

interaction term, cij, that reflects the effect of local adaptation.
The estimation of the first two terms benefits from sharing

information across loci or populations, but this is not the case

for the interaction term, which is therefore poorly estimated

(Beaumont & Balding 2004, but see Riebler, Held & Stephan

2008). In practice, signatures of local adaptation are therefore

inferred from the locus-specific effects (ai) under the assump-

tion that large positive values reflect adaptive selection. The

implicit assumption is that background selection andmutation

should not have much of an effect on this term. In order to

relax this assumption and to better estimate the interaction

term, we introduce environmental data so that cij ¼ giEj,

whereEj is the ‘environmental differentiation’ observed in pop-

ulation j, and gi is a locus-specific coefficient. In what follows,

we first describe in detail the probabilistic model underlying

our Bayesian approach. We then evaluate its performance

using simulated data and then present an application using a

human data set. Finally, we discuss the scope of our method

and compare it with other existing genome-scan approaches.

Statisticalmodel

MODELLING ALLELE FREQUENCIES USING THE F MODEL

Our new genome-scan approach is based on the F model

(Beaumont & Balding 2004; Foll & Gaggiotti 2008) and

extends the software BayeScan (Foll & Gaggiotti 2008) by

incorporating environmental data so as to explicitly consider

local adaptation scenarios. Full details of theFmodel are given

by Gaggiotti & Foll (2010), so here we only provide a brief

description. The core assumptions of the F model is that all

populations share a common pool of migrants, but that their

effective sizes and immigration rates are population specific.

Thus, population structure at each locus is described by local

FST’s that measure genetic differentiation between each local

population and themigrant pool.

The F model uses the multinomial-Dirichlet likelihood for

the allele counts aij ¼ ðaij1; . . .; aijKi
Þ at locus i within popula-

tion j (where Ki is the number of distinct alleles at locus i) with

parameters given by the migrant pool allele frequencies,

fi ¼ ðfi1; . . .; fiKi
Þ, and a population- and locus-specific param-

eter of similarity, hij ¼ ð1� Fij
STÞ=ðFij

STÞ:
aij �multDirðhijfi1; . . .; hijfiKi

Þ; (eqn 1)

where multDir stands for the multinomial-Dirichlet distribu-

tion.

Although for the sake of simplicity, we only present here the

formulation for co-dominant data, the software implementing

our approach also allows for dominant data (e.g. AFLPmark-

ers) using the same probabilistic model as Foll & Gaggiotti

(2008). Note finally that, for bi-allelic co-dominant markers

(e.g. SNP markers), the likelihood reduces to a beta-binomial

model.

ALTERNATIVE MODELS TO EXPLAIN POPULATION

STRUCTURE

Our purpose is to better discriminate between true signals

of local adaptation and spurious signals left by other pro-

cesses. Therefore, we assume that genetic differentiation at

individual loci is influenced by three type of effects: (i) ge-

nomewide effects due to demography, (ii) a locus-specific

effect due to local adaptation caused by the focal environ-

mental variable and (iii) locus-specific effects unrelated to

the focal environmental variable. Although in principle one

could consider all seven alternative models that can be con-

structed with different combinations of these three effects,

most of them would not have any biological meaning. For

example, all models should include genomewide effects asso-

ciated with genetic drift. Additionally, we do not consider
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the two types of locus-specific effects simultaneously in a

full model. The reason for this is that the inclusion of ai
along with gi is not justified biologically. This is because

the joint effect of local adaptation and another locus-spe-

cific effect such as allele surfing or background selection on

the same locus is extremely unlikely because of either the

strong effect of genetic drift in the first instance or the

implausibility of a favourable variant arising and increasing

in frequency in a highly conserved region subject to strong

purifying selection. Thus, we focus on three different models

to explain the genetic structuring at individual loci.

Null model of population structure

Under the null hypothesis that all loci are neutral, the local dif-

ferentiation parameter Fij
ST will be driven only by local popula-

tion demography and hence should be common to all loci:

log
Fij
ST

1� Fij
ST

 !
¼ log

1

hij

� �
¼ bj: (eqn 2)

A high bj valuemeans that the population j is strongly differ-

entiated from the pool of migrants. This could be due to a lack

of immigration from the other populations, a reduced effective

size or a particular spatial structure.

Alternativemodel of local adaptation

In this model, we focus on a particular signature left by a pro-

cess of local adaptation. If selection is driven by a putative

environmental factor, we expect that genetic differentiation for

the locus or loci under selection will be stronger than expected

under neutrality for populations with strong environmental

differentiation. Any measure of distance between the environ-

mental value of population j and the average environment

could serve as ameasure of differentiation. For the sake of sim-

plicity, we here only consider the absolute value. Furthermore,

in order to facilitate the calibration of prior distributions, we

consider standardised environmental values with unit vari-

ance.

To model the effect of local adaptation on locus i, we con-

sider the impact of environmental differentiation Ej of popula-

tion j on the locus, andwe thusmodify eqn 2 as follows:

log
Fij
ST

1� Fij
ST

 !
¼ bj þ giEj; (eqn 3)

where gi quantifies the sensitivity of locus i to the environmen-

tal differentiation.

Alternativemodel of locus-specific effect

Local adaptation with respect to the focal environmental vari-

able is not the only evolutionary phenomenon that could lead

to departures from the neutral model. Other phenomena that

could produce such locus-specific effects include local adapta-

tion due to other unknown factors, large differences in muta-

tion rate across loci, the so-called allele surfing phenomenon

(Edmonds, Lillie & Cavalli-Sforza 2004) and background

selection (Charlesworth 2013).

This is accounted for by using the following parametrisation

for local differentiation:

log
Fij
ST

1� Fij
ST

 !
¼ ai þ bj: (eqn 4)

The main advantage of implementing both of the above

alternative models is that we can distinguish between depar-

tures from the neutral model of unknown origin (using eqn 4)

and departures due to local adaptation caused by a particular

environmental factor (using eqn 3).

Material andmethods

IMPLEMENTATION OF THE STATIST ICAL MODEL

Our method, summarised in Fig. 1, uses two types of data: (i) the allele

counts a for each locus in each population sample and (ii) observed val-

ues E of an environmental variable (one value per population), which

are transformed into environmental differentiation using an appropri-

ate function. Indeed, our model aims at associating genetic distance

(i.e. the Fij
ST) with an environmental distance. Note that measuring an

environmental distance requires to define a reference. The most natural

reference would be the average of the environmental values, but this

would not be always the case (see the example of adaptation to altitude

in humans presented below). Also, it is strongly advised to standardise

the environmental values by dividing by the standard deviation, in

order to avoid effect size issues regarding the inference of the parameter

g.

As stated in the previous section, there are three differentmodels:

M1Neutralmodel: bj,

M2 Local adaptation model with environmental differentiation Ej:

bj þ giEj,

M3Locus-specificmodel: ai þ bj.

Note that in our framework, the focal model being tested against the

two others is M2. Thus, power and error rates (FPR and FDR) are

computed for model M2. Model M3 can be considered as a ‘nuisance

Fig. 1. Directed acyclic graph (DAG) of the model. Squared nodes

denote known quantities (E for environmental data and A for genetic

marker data). Circled nodes denote unknown parameters. Plain arrows

stand for deterministic relationships, and dashed arrows stand for sto-

chastic relationships.
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model’ whose role is to reduce the overall false positive rate by explain-

ing the inflation of the variance in FST due to locus-specific effects other

than selection driven by the focal environmental factor. Hence, the sta-

tistical significance of the parameter ai is not of interest for BayeScEnv:
only the significant values of gi are considered.

All three models were implemented using an RJMCMC algorithm

(Green 1995). In order to propose relevant values for new parameters

during the jumps, the RJMCMC is preceded by pilot runs. These are

aimed at both calibrating the MCMC proposals to reach efficient

acceptance rates and approximating the posterior distribution of

parameters, as proposed by Brooks (1998) and already implemented in

BayeScan (Foll & Gaggiotti 2008). Our code is based on the source

code of BayeScan 2�1 and is written in C++. The source and binaries

are available at https://github.com/devillemereuil/bayescenv. Our prior

belief in the three models is described by two parameters: the probabil-

ity p of moving away from the neutral model and the preference p for

M3 againstM2 as alternativemodels.We can calculate the prior proba-

bility for eachmodel as:

PðM1Þ ¼ 1� p;
PðM2Þ ¼ pð1� pÞ;
PðM3Þ ¼ pp:

(eqn 5)

The mathematical details of the transition between models can be

found in the Appendix S1 (Supporting information). Pilot studies

showed that using values of p above 0�5 yielded extremely conservative

results (note that setting p = 1 would mean that model M3 is always

favoured overM2, in which case the power of themethod is zero, yield-

ing no positives whatsoever).

We used a uniform Dirichlet prior for the allele frequencies

fi �Dirð1; . . .; 1Þ. The priors for the hyperparameters a and bwere nor-
mal with mean �1 and variance 1 (note that the results of our method

will be especially sensitive to the prior mean of a, but our pilot studies
showed that �1 was a good default). Since under a local adaptation

scenario, the parameter g is only expected to be positive, it was assigned

a uniform prior between 0 and 10.

Our method outputs posterior error probabilities and q-values,

which are test statistics related to the false discovery rate (FDR) (Storey

2002; K€all et al. 2008). Contrary to the commonly used false positive

rate (FPR), which is the probability of declaring a locus as positive

given that it is actually neutral, the FDR is the proportion of the posi-

tive results that are in fact false positives, and is more appropriate for

multiple testing (K€all et al. 2008) (see the Appendix S1 for more

details).

SIMULATION ANALYSIS

We performed a simulation study to evaluate the performance of our

method and compare it with that of BayeScan (Foll &Gaggiotti 2008).

We modelled 16 populations each with 500 individuals genotyped at

5000 loci, among which one (monogenic scenario) or 50 (polygenic sce-

nario) were under selection. We modelled three kinds of population

structure: (i) a classical islandmodel (IM), (ii) a one-dimension stepping

stone (SS)model and (iii) a hierarchically structured (HS)model.

The genome was composed of 5000 bi-allelic SNPs spread along 10

chromosomes. The loci under selection due to an environmental vari-

ableE (see Fig. S2 and eqn S7 and S8), one for the monogenic case and

50 for the polygenic case, were randomly distributed across the gen-

ome. Since all markers were independently initialised, our simulations

yielded negligible linkage disequilibrium. Consequently, we considered

as true positives only the loci subject to selection. For the IM and SS

scenarios, we directly initialised all 16 populations. For the HS

scenario, we initialised the ancestral population, which, following suc-

cessive and temporally spaced-out fission events, gave rise to 2, 4, ... , 16

populations. This hierarchical structure is reinforced by preferential

migration between related populations. More details regarding migra-

tion and population history are available in the supporting informa-

tion. This model is very close to that used by de Villemereuil et al.

(2014). It should be particularly difficult for our method, because all

populations are equally differentiated (i.e. the bj parameters are

expected to be roughly the same across populations), but a phylo-geo-

graphic covariance exists between related populations, which is not

explicitly accounted for by our probabilistic model. More information

regarding the environmental gradient and the fitness function are avail-

able in the supporting information, but, briefly, a polygenic multiplica-

tive model was used with a selection strength of 0�02 (0�1 for the

monogenic case).

The simulations were performed using the SimuPOP Python library

(Peng & Kimmel 2005), and the scripts are available online in the data

section. Our simulated data sets were analysed using our C++ code and

version 2.1 of BayeScan (Foll &Gaggiotti 2008).

We generated 100 data sets for each scenario and computed the rea-

lised FDR, FPR and power yielded by BayeScan and our new environ-

mental method (BayeScEnv). For the latter, we also compared several

parametrisations using a prior probability p of jumping away from the

neutral model of 0�1 (equivalent to the default prior odds used by

BayeScan, which is 10) or 0�5, as well as a preference for the locus-spe-
cific model p of 0�5 (environmental and locus-specific models are equi-

probable) or 0 (the locus-specific model is forbidden and only the

environmentalmodel is tested against the neutral one).

We supplemented these scenarios with a heterogeneous mutation

rate case, based on the IM scenario above, where most of the genome

had a high mutation rate of 0�05, whereas 50 loci had a low mutation

rate of 10�7. The result was an overall low FST of 0�05 for the whole

genome, and of 0�10 for the lowmutating loci.

HGDP SNP DATA ANALYSIS

In order to test our new method against a real data set, we focused

on 26 Asian populations from the Human Genome Diversity Panel

(HGDP) SNP Genotyping data. This data set consists of 660 918

SNP markers genotyped using Illumina 650Y arrays. After cleaning

the data set from mitochondrial and sex-linked markers, we removed

all markers with minor allele frequency below 5%. This left us with a

total of 446 117 SNPs. For all populations, we obtained the follow-

ing environmental variables from the BIOCLIM database: mean

annual temperature, precipitation and altitudinal data. We ran sepa-

rate BayeScEnv analysis for each variable and compared the results

with BayeScan (which does not use environmental variables). After

standardisation of the environmental variables, we computed envi-

ronmental differentiation from the mean for temperature and precipi-

tation, and from the sea level for elevation. Gene ontology

enrichment tests for the detected genes were performed using the

‘SNP mode’ of the GOWINDA software (Kofler & Schl€otterer 2012).

The prior odds for BayeScan was 10 for this analysis. BayeScEnv

prior parameters for this analysis were p = 0�1 and p = 0�5.

Results

SIMULATION RESULTS

By definition, a threshold value of a used to decide whether q-

values are significant or not is expected to yield an FDR of a
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on the long run, when the model is robust and priors are cali-

brated. Recall that in BayeScEnv, all q-value tests below were

performed on the parameter g to test for local adaptation. In

the case of BayeScan, on the other hand, the q-values corre-

spond to parameter a.
As shown in Fig. 2, BayeScan was less well calibrated, yield-

ing higher FDRs than BayeScEnv under all scenarios and for

both monogenic and polygenic selection. Additionally, for

BayeScEnv, the implementation using p = 0�1 was fairly well

calibrated (i.e. the curve is close the grey line in Fig. 2) under

the IM scenario (for both monogenic and polygenic versions)

and under the polygenic version of the HS scenario. This

implementation was much more conservative than the one

using p = 0�5. For p = 0�1 and p = 0, the FDRs were closer to

those yielded by BayeScan, but still lower.

The higher FDR for BayeScan and BayeScEnv with p = 0�5
or p = 0 was mainly driven by a higher FPR rather than a lack

of power (Fig. 3, see also Fig. S3). Notably though, BayeScan

had a quite high power, higher than that of BayeScEnv. Note,

however, that BayeScEnv with p = 0 had, as BayeScan, amax-

imal power in themonogenic scenarios andwas almost as pow-

erful as BayeScan in the polygenic scenarios. Yet its FDR was

lower (sometimes much lower) than that of BayeScan. This

indicates that the incorporation of environmental data helps to

reduce the error rate both with or without the inclusion of spu-

rious locus-specific effects (ai).More details regarding the FPR

results are available in theAppendix S1 (Fig. S3).

Another traditional way to apprehend the compromise

between power and false positives is the so-called receiver oper-

ating characteristics (ROC) curve, plotting power against FPR

(Fig. 4). In these plots, the curve that is ‘more to the left’ is pre-

ferred because this means it offers higher power for a lower

FPR. Figure 4 shows that BayeScEnv with p = 0�1 and p = 0

performed best under the IM and HS scenarios, whereas

BayeScEnv with p = 0�1 and p = 0�5 performed better under

the ‘harder’ SS scenario. Overall, although BayeScan has

higher power to detect local adaptation, it is still too liberal

when deciding that a locus is under selection for the scenarios

we investigated.

The heterogeneous mutation scenario lead to a dramatically

high false positive rate for the low mutating loci in the case of

BayeScan (62%). BayeScEnv, on the other hand, yielded a

much lower false positive rate for these loci (4�9%). Of course,

because the higher differentiation due to lowmutation rate can

Fig. 2. False discovery rate (FDR) against sig-

nificance threshold a for three scenarios (IM:

island model, SS: Stepping Stone model and

HS: Hierarchically Structured model) and

monogenic/polygenic selection. The grey line

is the expected identity relationship between

the FDR and a. The models tested are BayeS-

can (blue dashed) and BayeScEnv (orange

dotted, green dot-dashed and solid red) with

different probabilities p of jumping away from

the neutral model (M1) and different prefer-

ences p for the locus-specificmodel (M3).Note

that p = 0 means the environmental model

(M2) is tested against the neutral one only.
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be seemingly distributed according to the environmental vari-

able, higher false positive rates will always be expected in such

a scenario. Nevertheless, BayeScEnv is an improvement over

BayeScan in that regard.

ANALYSIS OF HUMAN DATA FROM ASIA

The results of the human data set analysis (Table 1) show a

dramatic discrepancy between the two methods. Whereas

BayeScan yields a very large number (66 316) of markers con-

sidered as significant at the 5% threshold, many fewer markers

(154–2728) are considered significant by BayeScEnv. Gene

ontology (GO) enrichment tests identified many significant

terms (Table 1). Note, however, that in the altitude and tem-

perature analyses, they correspond to a small number of genes

(11 and 20, respectively, see Table 1). The number of genes is

larger for the precipitation analysis (359) and even larger for

the analysis using BayeScan (5628).

Regarding the altitude, significant biological processes

included the fatty acid metabolism (e.g. SCARB1), skin pig-

mentation (e.g. MLANA, SLC24A5), kidney activity (e.g.

SLC12A1) and oxido-reductase activity (e.g. NOS1AP).

Regarding the temperature, significant biological process

included cardiac muscle activity (e.g. SLC8A1) and develop-

ment (e.g. NRG1, FOXP1), fatty acid metabolism (e.g.

FADS1, FADS2) and response to hypoxia (e.g. SLC8A1,

SERPINA1). For the precipitation analysis with BayeScEnv,

as well as the BayeScan analysis, the number of significant

termswas too large for hand-picked examples to be feasible.

The significance results (q-values) are displayed as a Man-

hattan plot in Fig. 5, along with the above-mentioned genes

for the altitude and temperature analyses (Fig. 5a,b). Other

regions of the genome also include outlier loci but they corre-

spond to non-coding regions, or are close to genes associated

withGO terms that were not significant, or to proteins without

a known function (e.g. C9orf91, which was themost significant

gene in the temperature analysis). Pattern of linkage disequilib-

rium was visible, which sometimes strongly supported some

candidate genes (Fig. 5a, SLC12A1 and SLC24A5). Finally,

comparing BayeScEnv (Fig. 5a–c) and BayeScan analyses

(Fig. 5d), we see that BayeScan yielded too many significant

markers for a Manhattan plot to be a useful display of the

results. An interesting pattern is that BayeScan yielded far

more outlier markers with maximal certainty (e.g. posterior

Fig. 3. Power against significance threshold a
for three scenarios (IM: island model, SS:

Stepping Stone model and HS: Hierarchically

Structured model) and monogenic/polygenic

selection. The models tested are BayeScan

(blue dashed) and BayeScEnv (orange dotted,

green dot-dashed and solid red) with different

probabilities p of jumping away from the neu-

tral model (M1) and different preferences p for

the locus-specific model (M3). Note that p = 0

means the environmental model (M2) is tested

against the neutral one only.
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probability of one) than BayeScEnv. For the present data set,

22 516markers had a posterior probability of one, whereas the

maximal posterior probability yielded by BayeScEnv was

0�9998. Finally, almost all loci detected using BayeScEnv were

also found when using BayeScan (between 98% for altitude to

100% for the two other variables).

Discussion

FEATURES AND PERFORMANCE OF THE METHOD

The method we introduce in this paper, BayeScEnv, has sev-

eral desirable features. First, just as BayeScan, it is a model-

based method. This means that the null model can be under-

stood in terms of a process of neutral evolution. One can thus

predict what themethod is able to fit or not. Second, we explic-

itly model a process of local adaptation caused by an environ-

mental variable. Third, in order to render the model more

robust, we account for locus-specific effects unrelated to the

environmental variable under consideration. These departures

can be due to another process of local adaptation (i.e. caused

by unknown environmental variables), to large differences in

mutation rates across loci, to background selection (Charles-

worth 2013) or to complex spatial effects, such as allele surfing

(Edmonds, Lillie & Cavalli-Sforza 2004) and hierarchical pop-

ulation structure (Excoffier, Hofer & Foll 2009). Our simula-

tion results show that when compared to BayeScan,

BayeScEnv has a better control of its false discovery rate under

various scenarios (Fig. 2), yielding fewer, but more reliable

candidate markers. Obviously, this has a cost in terms of abso-

Fig. 4. Power against false positive rate

(FPR), a.k.a. ROC curve, for three scenarios

(IM: Island model, SS: Stepping Stone model

andHS: Hierarchically Structuredmodel) and

monogenic/polygenic selection. The models

tested are BayeScan (blue dashed) and BayeS-

cEnv (orange dotted, green dot-dashed and

solid red) with different probabilities p of

jumping away from the neutral model (M1)

and different preferences p for the locus-spe-

cific model (M3). Note that p = 0 means the

environmental model (M2) is tested against

the neutral one only.

Table 1. Results from BayeScan and BayeScEnv on the human data

set. FDR significance threshold was set to 5%. The total number of

testedmarkers was 446 117

Method Variable

Nr of

significant

SNPs

Nr of

significant

GO terms

Nr of genes

associated

with a

significant

GO term

BayeScEnv Altitude 154 32 11

Temperature 170 103 20

Precipitation 2728 439 359

BayeScan – 66 316 469 5628
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(a)

(b)

(c)

(d)

Fig. 5. Manhattan plot of the q-values for the human data set when using BayeScEnv with altitude (a), temperature (b), precipitations (c) or when

using BayeScan (d). For altitude and temperature (a and b), genes mentioned in the text are displayed using black lines and genes associated with a

significantGO term using grey lines. Top ‘stripes’ for BayeScan (d) are artefacts due to finite number of iterations inRJMCMC (e.g. 0, 1, 2, 3... itera-

tions outside of the non-neutral model), corresponding to determined posterior probabilities when divided by the total number of iterations.
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lute power (Fig. 3), but BayeScEnv still performs better than

BayeScan in terms of the investigated compromises between

true and false positives (i.e. FDR andROC, Figs 2 and 4).

Besides, the parametrisation of BayeScEnv allows for a fine

and intuitive control of the false positive rate and power. For

example, setting p to 0 increases both power and false positive

rate, whereas setting p = 0�5 will allow for a more conservative

test. This is because with p = 0, that is when the locus-specific

effect model (M3) is excluded, the local adaptation model

(M2) will absorb much of the signal in the data, yielding a

higher probability of detecting true positives, but also a higher

sensitivity to false positives. Our simulation results show that,

if the species under study has moderate to large dispersal abili-

ties (c.f. hierarchical structure or island model), the former

parametrisation will be more appropriate, whereas for species

with low dispersal abilities (c.f. stepping stone model), the lat-

ter should be preferred. Thus, being able to choose the right

parametrisation only requires limited knowledge about the dis-

persal abilities of the species.

We note that BayeScan was recently extended to consider

species with hierarchical population structure (BayeScan3,

Foll et al. 2014). With BayeScan3, it is now possible to study

widely distributed species covering several continents or geo-

graphic regions. It is also possible to better focus on local adap-

tation by considering groups that include pairs of populations

inhabiting different environments such as low- and high-alti-

tude habitats. Thus, BayeScan3 allows for the consideration of

categorical environmental variables. Our new approach on the

other hand allows the study of local adaptation related to con-

tinuous environmental variables in species with a more

restricted range.

HOW TO QUANTIFY ‘ENVIRONMENTAL

DIFFERENTIAT ION’?

Tomodel local adaptation, we compute an ‘environmental dif-

ferentiation’ in terms of the distance (absolute value) to a refer-

ence value. Although this reference can conveniently be chosen

as the average of the environmental values across the sampled

populations, other kinds of reference may be biologically more

relevant. For example, in our analysis of the effect of elevation

in humans, it seems appropriate to use sea level as the refer-

ence. Indeed, given the kind of environmental variables eleva-

tion is a proxy for (e.g. partial pressure of oxygen,

temperature, solar radiation, etc.), for most systems, we would

consider the sea level as a neutral environment rather than the

differentiated one.

Another way to account for environmental differentiation is

to use principal component analysis (PCA), providing one of

the axes to BayeScEnv as a description of the distance between

environments. Despite this practice being an elegant way to

summarise environmental distance between populations, it

also has the drawback of making it more difficult to identify

the ‘causal’ variable.

Note that the environmental variables must be standardised

so as to avoid scale inconsistencies between g and a and b. If
we choose the average environmental value as reference, then

standardisation involves mean-centring and rescaling to have

unit variance. However, if we choose another reference, then

standardisation only involves rescaling to have unit variance.

Finally, the software implementation of our method only

accepts one environmental variable at the time as including

more than one variable would considerably slow the algorithm

down and render the biological interpretation of g quite

tedious. Also, when using several correlated variables, it is

important to realise that statistically distinguishing between

the relative selective roles of each onewould requiremany pop-

ulations.

COMPARISON WITH OTHER ENVIRONMENTAL

ASSOCIATION METHODS

There are several genome-scan approaches that incorporate

environmental information, such as Bayenv (Coop et al.

2010), LFMM (Frichot et al. 2013) and gINLAnd (Guillot

et al. 2014). Thesemethods perform a regression between allele

frequencies and environmental values. Yet non-equilibrium

situations combined with complex spatial structuring can lead

to spatial correlations in allele frequencies, which in turn can

lead to high false positive rates. To minimise this problem, the

above methods take into account allele frequency correlations

across populations while performing the regression.

BayeScEnv, on the other hand, assumes that all popula-

tions are independent, exchanging genes only through the

migrant pool. However, it includes a locus-specific effect

unrelated to the environmental variable that helps to take

into account locus-specific spatial effects due to deviations

from the underlying demographic model. The fact that this

approach works is illustrated by our simulation study, which

showed that BayeScEnv was fairly robust to isolation by

distance and a hierarchically structured scenario. Moreover,

the analyses of simulated data sets from de Villemereuil

et al. (2014), available in the supporting information, show

that even under very complex scenarios, BayeScEnv can

compete with other environmental association methods. In

particular, most of these scenarios assume an environmental

selective gradient confounded with population structure,

which is particularly hard for genome scan methods (Frichot

et al. 2015): the results show that, in that case, BayeScEnv

suffer from low power, but not from an excess of false posi-

tives. When compared with the other methods (including

Bayenv and LFMM), BayeScEnv typically yields a medium

FDR for most scenarios and is less scenario sensitive than

Bayenv and LFMM. Nevertheless, we note that BayeScEnv

is best suited for species with medium to high dispersal abili-

ties such as marine species and anemophilous plants.

Another point that distinguishes BayeScEnv from these

methods is that it does not assume any particular functional

form for the relationship between environmental values and

allele frequencies. While existing association methods all

assume a clinal pattern, BayeScEnv only assumes that genetic

differentiation increase exponentially with environmental dif-

ferentiation. This allows for a more diverse family of relation-

ships between allele frequencies and the environment.
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Finally, BayeScEnv is one of the very few methods to study

gene–environment associations that can be used with domi-

nant data (but see alsoGuillot et al. 2014).

DATA ANALYSIS

When confronted with real data sets, BayeScEnv typically

returned fewer significant markers than BayeScan. This is

explained both by the focus on searching for outliers linked to

a specific environmental factor and by the lower false positive

rate of our approach. When applied to the human data set,

BayeScEnv identified several genomic regions that are enriched

for gene ontology terms relevant to potential local adaptation

to altitude or temperature. We emphasise that this study was

not meant to exhaustively and rigorously investigate local

adaptation in Asian human populations. However, our results

tend to demonstrate that the candidates yielded by BayeScEnv

have a biological interpretation. For example, skin pigmenta-

tion and cardiac activity could clearly be involved in responses

to increased solar radiation and depleted oxygen availability at

high elevation.

Much of the ontologies linked to temperature were

potentially confounded with adaptation to altitude, such as

the response to hypoxia and cardiac muscle activity. Also,

fatty acid metabolism was associated with both altitude and

temperature. Of course, the biological functions described

here do not account for all the signals yielded by BayeS-

cEnv (see Fig. 5a,b). Other genomic significant regions

include genes with less obvious biological function regarding

local adaptation, non-coding regions and proteins without a

known function. Finally, the analysis using the precipitation

variable yielded too many significant markers for a detailed

analysis of the biological functions involved. This may not

necessarily be due to a confounding effect of the spatial

structure (the human Asian populations being structured

mainly from West to East, while the Eastern climate is

characterised by strong precipitations during the monsoon),

since precipitation may behave as a surrogate for several

environmental variables.

Conclusion

The main improvement introduced by our new method,

BayeScEnv, over existing FST-based genome-scan

approaches is the possibility of focusing on the detection of

outlier loci linked to genomic regions involved in local

adaptation and better distinguishing between the signal of

positive selection and that of other locus-specific processes

such as mutation (see the heterogeneous mutation rate sce-

nario in the Results) and background selection. Although it

does not explicitly model complex spatial effects, the consid-

eration of two different locus-specific effects make it more

robust to potential deviations from the migrant pool model.

This is reflected in its much lower false discovery rate when

compared to BayeScan.

Our new formulation also allows for an improved con-

trol of the true/false positives compromise through the

parameter p, which describes our preference for the model

that includes a locus-specific effect unrelated to the envi-

ronmental factor over the model that includes environmen-

tal effects. Although we recommend using p = 0�5, lower

values (including 0) could be used if population structure

is weak or maximising power is more important than

reducing the false positive rate.

With this new method, there are now three alternative

formulations of genome-scan methods based on the F

model. BayeScan detects a wide range of locus-specific

effects (including background selection). Although its false

discovery rate is higher than that of the two extensions, it is

able to detect regions of the genome subject to purifying

selection. The hierarchical version of this original formula-

tion, BayeScan3, allows the study of local adaptation due

to categorical environmental factors. Finally, our new

method, BayeScEnv, is more appropriate to detect genomic

regions under the influence of selective pressures exerted by

continuous environmental variables. Thus, all three methods

are complementary and jointly cover scenarios applicable to

a wide range of species
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